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ABSTRACT

We present and validate simple and efficient methods to estimate the chaoticity of orbits in low-dimensional conservative dynamical systems,
namely, autonomous Hamiltonian systems and area-preserving symplectic maps, from computations of Lagrangian descriptors (LDs) on
short time scales. Two quantities are proposed for determining the chaotic or regular nature of orbits in a system’s phase space, which are
based on the values of the LDs of these orbits and of nearby ones: The difference and ratio of neighboring orbits’ LDs. Using as generic test
models the prototypical two degree of freedom Hénon–Heiles system and the two-dimensional standard map, we find that these indicators
are able to correctly characterize the chaotic or regular nature of orbits to better than 90% agreement with results obtained by implementing
the Smaller Alignment Index (SALI) method, which is a well-established chaos detection technique. Further investigating the performance of
the two introduced quantities, we discuss the effects of the total integration time and of the spacing between the used neighboring orbits on
the accuracy of the methods, finding that even typical short time, coarse-grid LD computations are sufficient to provide reliable quantification
of the systems’ chaotic component, using less CPU time than the SALI. In addition to quantifying chaos, the introduced indicators have the
ability to reveal details about the systems’ local and global chaotic phase space structure. Our findings clearly suggest that LDs can also be
used to quantify and investigate chaos in continuous and discrete low-dimensional conservative dynamical systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0120889

Identifying the chaotic or regular nature of orbits of dynami-
cal systems is a fundamental task of nonlinear dynamics theory.
Chaos identification can be done by implementing techniques
based on the evolution of the orbits themselves and of small
perturbations to these orbits, such as the computation of the
Smaller Alignment Index (SALI), which is a well-established and
efficient chaos indicator. Here, we show that the recently intro-
duced method of Lagrangian descriptors (LDs), which allows
for the efficient revelation of phase space structures, can also
be used to globally investigate the chaoticity of low-dimensional
conservative systems. More specifically, we introduce two quan-
tities derived directly from the LD computations of neighbor-
ing orbits as coarse-grid indicators capable of distinguishing
between chaotic and regular trajectories. We show that these two
quantities perform very well when benchmarked against accu-
rate estimations of chaotic behavior from the SALI method,
as they correctly characterize the chaotic nature of over 90%

of the orbits, despite being based on short time computations.
Furthermore, the introduced quantities probe the phase space
dynamics, enabling effective visualization of the space’s structural
properties.

I. INTRODUCTION

The problem of efficiently characterizing orbits of dynamical
systems as chaotic or regular has been around for over a cen-
tury. The pioneering work of Lyapunov1 who introduced some
asymptotic measures to characterize the growth or shrinking of
small perturbations to orbits (usually called “deviation vectors”) in
dynamical systems cannot be overemphasized. These measures have
over the years been termed Lyapunov exponents (LEs). Oseledets2

applied LEs to chaotic motion, developing the so-called multiplica-
tive ergodic theorem, and provided the theoretical basis for their
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numerical computation, which was implemented a few years later3,4

(see also Ref. 5 and references therein). The computation of the
maximum LE (mLE) is the most commonly used chaos indicator,
as a positive value of the index denotes chaotic behavior, and has
been applied in studies of such diverse systems as DNA molecules,6

graphene nanoribbons,7 disordered granular chains,8,9 soft archi-
tected structures,10 neural networks,11 as well as of models describing
the motion of planetary satellites12 or of particles in the vicinity of
black holes.13

Over the years, several chaos indicators have been developed to
overcome the problem of the slow convergence of the mLE estima-
tor to its limiting value, such as the fast Lyapunov indicator (FLI),14

the Mean Exponential Growth of Nearby Orbits (MEGNOs),15 the
Smaller Alignment Index (SALI),16 and its extension, the so-called
Generalized Alignment Index (GALI).17 Review papers on many
modern chaos detection techniques can be found in Ref. 18, while
a detailed comparison of different chaos indicators, which utilize
deviation vectors, is performed in Ref. 19. In our study, we will use
the SALI method in order to accurately reveal the chaotic or regular
nature of orbits. The SALI has proved to be an efficient chaos indi-
cator and has been successfully implemented in studies of various
dynamical systems (see, for example, Ref. 20 and references therein).

From a dynamical systems perspective, it is fundamentally
important to characterize a system’s chaotic behavior both locally
and globally. In the local case, the characterization is made within
the vicinity of a particular orbit, while in the global case, it is per-
formed over a large set of initial conditions (ICs). An efficient way
to visualize the global dynamics of a low-dimensional dynamical sys-
tem, and, in particular, a 2 degree of freedom (2dof) autonomous
Hamiltonian system, is to construct the related Poincaré surface of
section (PSS), which in that case has two dimensions and can be
easily visualized (see, for example, Chap. 1 in Ref. 21). Scattered
points on a PSS indicate chaos, while points forming smooth look-
ing curves belong to regular orbits, similar to what is observed for
orbits in the phase space portraits of two-dimensional (2D) sym-
plectic maps, which are discrete time dynamical systems. In our
study, we will investigate the chaotic behavior of two prototypical
systems, namely, the 2dof Hénon–Heiles Hamiltonian22 and the 2D
standard map,23 by, respectively, combining PSS and phase portrait
plots with SALI computations in order to reveal the systems’ global
dynamics.

A recently introduced technique with origins from oceano-
graphic studies,24,25 the Lagrangian descriptor (LD) method,26 has
proved useful in revealing and visualizing phase space structures
with applications ranging from describing the dynamics of chemi-
cal reactions,27–29 unveiling the behavior of molecular structures,30–32

constructing time dependent dividing surfaces,33 detecting dynam-
ical matching in a Caldera potential,34 investigating the properties
of open and unbounded maps,35,36 finding bifurcations of periodic
orbits,37 3D vector fields,38 stochastic dynamical systems,39 as well
as of dissipative systems,40 among a plethora of other applications.
LDs have recently also been used to extract Lagrangian coherent
structures in cardiovascular flows.41 One of the main reasons for the
popularity of this method within the dynamical systems community
is its simplicity. Recently, a few studies have been reported in the lit-
erature, which have attempted to make a connection between LDs
and chaoticity.42,43

In this paper, we introduce two methods, which are based on
LD computations to globally characterize the chaotic nature of the
dynamics of low-dimensional systems, in a similar way to that which
would be revealed by the PSS and the SALI methods. To the best
of our knowledge, this is the first time LDs have been directly used
as a chaos detection technique. In particular, we demonstrate how
quantities based on LDs can be used as chaos indicators within a
reasonable degree of accuracy, using as test cases the aforemen-
tioned Hénon–Heiles model and 2D standard map. Our approach
has the advantage of being computationally cheaper than standard
methods (like the SALI) based on the evolution of deviation vec-
tors, which require the integration (iteration) of both the equations
of motion (the map), as well as of the so-called variational equations
(tangent map) governing the evolution of the deviation vector of a
Hamiltonian system (symplectic map).5,20

The rest of this paper is organized as follows. In Sec. II, we
describe our approach in detail and define the two indicators we
use in our work. In Sec. III, we discuss the numerical implemen-
tation of these methods to the Hénon–Heiles system and the 2D
standard map. Finally, we present our conclusions and discuss the
significance of our findings in Sec. IV.

II. NUMERICAL TECHNIQUES

A basic characteristic of chaotic behavior is the sensitive depen-
dence on ICs,44 which leads to the exponential separation of initially
nearby orbits or, in other words, to the exponential growth of the
length of deviation vectors. Exploiting this feature, several chaos
indicators, such as the mLE,2 the FLI,14 and the MEGNO,15,45 dis-
criminate between regular and chaotic orbits, while the SALI and
GALI techniques make use of the convergence of arbitrary deviation
vectors to the direction defined by the mLE.17,20

According to Refs. 16, 20, and 46, in order to evaluate the SALI
of an orbit, we follow the evolution of the orbit itself and of two,
initially linearly independent, deviation vectors v1(0) and v2(0) from
it. Then, at time t, we compute SALI(t) as

SALI(t) = min
{

‖v̂1(t) + v̂2(t)‖, ‖v̂1(t) − v̂2(t)‖
}

, (1)

with ‖ · ‖ denoting the usual Euclidean norm and v̂i(t) =
vi(t)

‖vi(t)‖
,

i = 1, 2 being unit vectors. In the case of chaotic orbits, the two devi-
ation vectors will eventually be aligned to the direction defined by
the mLE and, consequently, the SALI will become zero, following an
exponential decay, which depends on the values of the two largest
Lyapunov exponents λ1 ≥ λ2; i.e.,

SALI(t) ∝ e−(λ1−λ2)t. (2)

On the other hand, in the case of regular orbits, the two devia-
tion vectors will fall on the tangent space of the torus on which the
motion takes place.

In the case of a 2dof Hamiltonian system, such as the
Hénon–Heiles model we consider here, we have λ2 = 0 (see, for
example, Ref. 5), and the behavior of SALI is20

SALI(t) ∝

{

constant for regular orbits,

e−λ1t for chaotic orbits.
(3)
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In the case of 2D symplectic maps, regular motion occurs on 1D
curves, whose tangent space is also 1D. Thus, also in the case of
regular motion, the two deviation vectors will eventually have the
same direction. Consequently, the SALI will vanish, but this will be
done with the index following a power law decay, in contrast to the
exponential decay observed for chaotic orbits for which λ2 = −λ1.5

Therefore, in this case, we get20

SALI(T) ∝

{

1
T

for regular orbits,

e−2λ1T for chaotic orbits,
(4)

with T denoting the number of map iterations.
Here, we will utilize the exponential growth of the phase space

distance between initially nearby chaotic orbits to introduce a simple
method of estimating chaoticity in low-dimensional systems using
LDs. First, we consider an ND continuous dynamical system, whose
state at time t is defined by an ND point x(t) in the system’s phase
space and its evolution by a vector field of the form

ẋ(t) =
dx(t)

dt
= f (x(t; x0), t), (5)

with x0 ≡ x(0) being the IC of an orbit and f an ND vector func-
tion, which is differentiable in the phase space coordinates x and
continuous in time. Then, the “p-norm” LD for x0 is defined as47

Mp(x0) =

∫ τ

−τ

N
∑

i=1

∣

∣ fi (x(t; x0), t)
∣

∣

p
dt, 0 < p ≤ 1, (6)

with τ > 0 determining the length of the considered time window.
Although the quantity defined in (6) is not a norm of the velocity
vector ẋ(t), we use the term “p-norm” LD, which was also adopted in
previous publications,26,34,47 in order to emphasize the appearance of
the p power of the norm of each velocity component fi. The expres-
sion in (6) can be decomposed into the forward and backward time

contributions of the integral, M
f
p and Mb

p, respectively. A similar but

subtly different formulation of the LD uses the arc length, simply
giving

M(x0) =

∫ τ

−τ

||ẋ(t)|| dt =

∫ τ

−τ

||f (x(t; x0), t)|| dt

=

∫ τ

−τ

√

√

√

√

N
∑

i=1

f2i (x(t; x0), t) dt. (7)

The LDs have also been used in discrete time systems. There-
fore, for a general ND map of the form

xj+1 = g(xj), (8)

with xj being an ND vector denoting the state of the system at iter-
ation j and g being a general ND vector function of the phase space
coordinates, a “p-norm” formulation, similar to the one defined for
the continuous time case in (6), exists48

MDp =

T−1
∑

j=−T

N
∑

i=1

∣

∣

∣
x(i)

j+1 − x(i)
j

∣

∣

∣

p

, 0 < p ≤ 1, (9)

where i indexes the N elements of the vector x and T is the number
of iterations. Furthermore, the adaptation of the arc length LD (7) to

the case of discrete time maps leads to the quantity

MD =

T−1
∑

j=−T

√

√

√

√

N
∑

i=1

(

x(i)
j+1 − x(i)

j

)2

. (10)

It is worth noting that, in the analysis below, we use the nota-
tion of the LD corresponding to the definition (7) related to the arc
length, mainly because this definition is intuitively clearer, but our
approach and arguments can similarly be implemented when the
“p-norm” version of the LD is used. Furthermore, for simplicity rea-
sons, we will refer only to the case of continuous time systems, but
analogous arguments hold for maps. We also emphasize that for all
our numerical results, we used the “p-norm” LD of Eqs. (6) and (9)
with p = 0.5, as this version of the LDs has been recommended for
effective detection of dynamical features25,47 and successfully imple-
mented in various studies,34,36,42 and considered only the forward in
time contributions to the LDs.

A. The difference of LDs of neighboring orbits

Aiming to identify the chaotic or regular nature of an orbit
starting at point x in the phase space of a continuous time dynamical
system, let us consider the forward LD values, Mf, of this orbit and
of a nearby one, initially located at x′ = x + w with w being a small
perturbation. Then, according to (7), at any time τ > 0, the absolute
difference of these forward LDs is given by

∣

∣Mf(x) − Mf(x′)
∣

∣ =

∣

∣

∣

∣

∫ τ

0

(

||ẋ|| − ||ẋ′||
)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ τ

0

(||ẋ|| − ||ẋ + ẇ||) dt

∣

∣

∣

∣

. (11)

Inherently, this quantity encodes information about the evolution
of the deviation between the two orbits and consequently about the
chaotic (exponential growth of the deviation) or regular (polyno-
mial or typically a linear increase of the deviation’s size17) nature of
the orbit. Consequently, it is reasonable to expect that the difference
of the two LDs (11) will be noticeably larger for chaotic orbits. Actu-
ally, it is more appropriate to consider the difference in arc lengths
between these two orbits (x and x′) in the context of the actual arc
length of the reference orbit ||ẋ|| by considering the ratio

δf(x) =

∣

∣Mf(x) − Mf(x′)
∣

∣

|Mf(x)|

=

∣

∣

∣

∣

∫ τ

0

(||ẋ|| − ||ẋ + ẇ||)] dt

∣

∣

∣

∣

∫ τ

0

||ẋ|| dt

. (12)

It is clear that the exponential (or not) growth rate of w deci-
sively determines the magnitude of δf(x) as τ grows. In particular,
the value of δf(x) for chaotic orbits will eventually be substantially
larger than the ones obtained for regular ones, allowing the discrim-
ination between the two cases. The same behavior will be observed
if we substitute in Eqs. (11) and (12) Mf with the backward time
LD Mb, defining in this way an analogous quantity to δf(x), which
we will naturally denote as δb(x). The important observation here
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is that the essential information about the chaoticity of an orbit is
actually equivalently encoded in each one of the forward or back-
ward computation of the LD. Thus, one of these LDs is sufficient
to reveal the potential chaoticity of an orbit and, consequently, be
used as a chaos indicator. In particular, in our study, we consider
only computations of the forward LDs. Generalizing these ideas to
dynamical systems with multidimensional phase spaces, we can infer
that quantities similar to the one in (12), based on LD computations
from several neighboring orbits around the tested orbit x, in many (if
not all) possible phase space directions, can be used as effective chaos
indicators. Thus, we are led to introduce the following quantity.

Definition 1. The difference of neighboring orbits’
Lagrangian descriptors (DNLD), D

n

L
. We consider ICs of orbits

on a finite grid of an n(≥ 1)-dimensional subspace of the N(≥ n)-
dimensional phase space of a dynamical system and the LDs of these
orbits. Then, any non-boundary point x in this subspace has 2n
nearest neighbors

y±
i = x ± σ (i)e(i), i = 1, 2, . . . , n,

where e(i) is the ith usual basis vector in R
n and σ (i) is the distance

between successive grid points in this direction. If we denote by M(x)
and M

(

y±
i

)

the LDs of these orbits, then the difference of neighbor-
ing orbits’ Lagrangian descriptors (DNLD) at x in this subspace is
defined as

Dn
L(x) =

1

2n

n
∑

i=1

∣

∣M(x) − M(y+
i )

∣

∣ +
∣

∣M(x) − M(y−
i )

∣

∣

M(x)
. (13)

It is apparent that by implementing the DNLD indicator Dn
L(x)

(13), we are actually evaluating the average of multiple normalized
absolute differences of LDs of neighboring orbits. Thus, by com-
bining all these differences, we are extracting information about the
magnitude of growth of “small deviations” in many directions from
the studied orbit, getting in this way a more global understanding
of the dynamical properties of the orbit’s neighborhood. Due to the
exponential growth of perturbations of chaotic orbits, we expect the
differences between LD values of neighboring orbits to be larger
for such orbits than the differences of LDs encountered for regu-
lar orbits. Thus, using the Dn

L(x) index, we can classify an orbit with
IC x as chaotic if Dn

L(x) ≥ αD for some appropriately chosen positive
threshold value αD.

B. The ratio of LDs of neighboring orbits

Another approach to relate the growth rate of separations
between initially nearby orbits to their LDs, in order to construct
a quantity, which can be used as a chaos indicator, is to consider the
ratio of the these LD values,

ρ f(x) =
Mf(x′)

Mf(x)
=

∫ τ

0

||ẋ + ẇ|| dt

∫ τ

0

||ẋ|| dt

. (14)

It is evident that the exponential growth in the magnitude of w,
which is encountered in the case of chaotic orbits, will result in a
divergence of the ρ f(x) value away from 1. On the other hand, in
the case of regular orbits for which the length of w increases much

more slowly, the growth of the numerator in (14) is not expected
to be very different to the growth of the denominator, resulting in
ρ f(x) values closer to 1. Thus, the information about the chaotic or
regular nature of an orbit is related to the deviation or the proximity
of ρ f(x) to 1. Although in (14) we considered the forward time LD
Mf, a similar expression can be written for the backward time LD
Mb, which will exhibit the same behavior as Mf for chaotic and reg-
ular orbits. Therefore, we can combine together both the ρ f(x) and
the analogous ρb(x) quantities in order to devise an index whose
deviation from 1 can be used to identify chaos. Nevertheless, in our
numerical investigations, we consider results obtained only by the
use of the forward LDs, as they require less computational effort and
practically lead to the same outcomes.

Definition 2. The ratio of neighboring orbits’ Lagrangian
descriptors (RNLD), Rn

L. Under the same conditions used for the
definition of the DNLD index Dn

L, we introduce the ratio of neigh-
boring orbits’ Lagrangian descriptors (RNLD) to be

Rn
L(x) =

∣

∣

∣

∣

∣

1 −
1

2n

n
∑

i=1

M(y+
i ) + M(y−

i )

M(x)

∣

∣

∣

∣

∣

. (15)

Similarly to the DNLD (13), the Rn
L(x) index is also based

on information from several nearby orbits to the tested one, cap-
turing in this way the general dynamical properties of the orbit’s
phase space neighborhood, and can efficiently be used to identify
chaos. In particular, an orbit with IC x is characterized as chaotic if
Rn

L(x) ≥ αR, for some appropriately chosen threshold value αR > 0,
while Rn

L(x) < αR classifies the orbit as regular.

III. NUMERICAL RESULTS

In this section, we investigate the ability of both the Dn
L (13)

and the Rn
L (15) indices to distinguish between chaotic and regular

motion by applying them to two prototypical, well-known low-
dimensional conservative systems of continuous and discrete time,
namely the 2dof Hénon–Heiles Hamiltonian model22 and the 2D
standard map.23 We note that the rich dynamics evident in these
models render them good test systems for nonlinear dynamical tech-
niques, as has been seen in the past.14,16,46 In our study, we present
results obtained for individual orbits as well as for ensembles of
orbits in phase space subspaces of different dimensions based only
on the evaluations of the forward LDs.

A. Detecting chaos in the Hénon–Heiles system

The Hénon–Heiles Hamiltonian is a low-dimensional system
whose chaotic behavior has been extensively studied since its intro-
duction in Ref. 22, as a model of the motion of a star at the central
regions of the symmetry plane of a galaxy. Its Hamiltonian function
is given by

H(x, y, px, py) =
1

2

(

p2
x + p2

y + x2 + y2
)

+ x2y −
y3

3
, (16)

with x, y being the coordinates of the star and px, py being the con-
jugate momenta. The system has a 4D phase space, but for a fixed
value H of the Hamiltonian function (which typically is referred as
the system’s energy), its dynamics can be efficiently visualized on the
2D PSS defined by x = 0 and px > 0.
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As a first step toward investigating the behavior and the per-
formance of the Dn

L and Rn
L indicators, we present in Fig. 1 their time

evolution for two representative orbits of the Hénon–Heiles system.
In particular, for energy H = 1/8, we consider a chaotic orbit with
IC x = py = 0, y = −0.15 and a regular one with IC x = py = 0,
y = 0.2 [note that the fourth coordinate, px > 0, of the IC of both
orbits is computed from (16)]. The ICs for each of these orbits are
denoted by a blue (chaotic) and a green (regular) point on the sys-
tem’s PSS depicted in Fig. 2(a). For each orbit, the computation of
the two indicators is based on the LDs of the orbits themselves and
of two neighboring ones lying on the line py = 0 in the system’s PSS
[red horizontal line in Fig. 2(a)], having a difference σ = 2.5 · 10−4

in their y coordinates. In this way, we compute the D1
L (13) and

R1
L (15) indices, but similar behaviors to the ones seen in Fig. 1 are

observed when higher order indices with n > 1 are computed.
From the results of Fig. 1, we see that in the case of the

chaotic orbit, the values of both the D1
L (dashed blue curve) and

the R1
L (dashed green curve) indices remain generally well above

10−3 except from some short time intervals for which the LDs of
the neighboring orbits are practically opposite and consequently,
R1

L decreases. The occurrence of this arrangement of LDs for orbits
neighboring a chaotic one, which can result in very small RNLD
values (which typically are expected for regular orbits) should be
borne in mind, as it can lead to the mischaracterization of chaotic
orbits. Since the duration of the dips of the R1

L values in Fig. 1 is very
short, the number of mischaracterized chaotic orbits is expected to
be small whenever the index is used for a more global investigation
of the dynamics of an ensemble of several orbits, and consequently,
it should not affect the overall efficiency of the index. On the other
hand, the D1

L (orange curve) and the R1
L (red curve) values for the

FIG. 1. The time evolution of the D1
L (13) and the R

1
L (15) indices, based on the

computation of forward LDs in the time interval [0, τ ], for two representative orbits
of the Hénon–Heiles system (16) with H = 1/8, a chaotic one with IC x = py
= 0, y = −0.15, px > 0 [D1

L, dashed blue curve; R
1
L , dashed green curve], and

a regular one with IC x = py = 0, y = 0.2, px > 0 [D1
L, orange curve; R

1
L , red

curve]. The ICs of these orbits are denoted by blue (chaotic) and green (regular)
points [Fig. 2(a)].

considered regular orbit show a clearly distinct behavior, as they
exhibit an oscillatory motif, remaining much smaller (as expected)
than in the case of the chaotic orbit. It is worth noting that the R1

L

is slowly increasing but nevertheless remains orders of magnitude
smaller with respect to the values it attains for the chaotic orbit.

After gaining insight of the behavior of the DNLD and RNLD
indices for individual orbits, we can gradually start using these indi-
cators to obtain a more general understanding of the dynamics of
the Hénon–Heiles system. We begin our exploration by consider-
ing orbits with ICs on a line in the system’s PSS. More specifically,
we set the system’s total energy to H = 1/8 and create in Fig. 2(a)
the PSS (y, py) defined by x = 0, px > 0. In this PSS, we can clearly
see regions of chaotic behavior (scattered points) and areas where
regular motion occurs (smooth curves). We consider a set of sev-
eral equidistant ICs on the py = 0 line in this PSS [horizontal red
line in Fig. 2(a)] by taking a spacing between neighboring ICs of
σ = 2.5 · 10−4 in the interval −0.5 ≤ y ≤ 0.75. For each one of these
orbits (in total, about 4500 ICs were energetically permitted), we
compute its forward LD. The results are plotted in Fig. 2(b) as a
function of the y coordinate of the orbits’ IC. Then, using these LDs,
we compute the corresponding D1

L (13) and the R1
L (15) indices for

τ = 1000 and present their values in Figs. 2(c) and 2(d), respectively.
We note that results similar to the ones seen in Figs. 2(c) and 2(d) are
obtained if we use computations of only the backward LDs or both
the forward and backward LDs. Thus, restricting our study to using
only the forward LD values provide the same dynamical informa-
tion, decreasing at the same time the computational cost for finding
the DNLD and RNLD indices.

By contrasting the results of Fig. 2(b), where the LDs of the
orbits are plotted, with the location of these orbits on the PSS of
Fig. 2(a), we observe a clear difference between the behavior of the
LDs in regular and chaotic regions. The LDs of regular orbits have a
fairly smooth variation with y, while in the chaotic regions, the LDs
behave erratically. This qualitative variation in the behavior of the
LDs between regions of chaos and regularity has already been noted
in Ref. 43, although it was not connected with the construction of
a diagnostic which would allow the discrimination between the two
cases.

The definitions of both the Dn
L (13) and the Rn

L (15) indices
imply that, in general, the smooth behavior of LDs for regular
regions would result in smaller DNLD and RNLD values, with
respect to the ones obtained for chaotic orbits where abrupt and
erratic changes of LD values between nearby orbits are observed.
This general trend is indeed evident in Figs. 2(c) and 2(d) where
the values of D1

L and R1
L are, respectively, shown. The values of both

indices appear to be in the vicinity of ≈ 10−2 for most chaotic orbits
and below an approximate, rough threshold value of 10−3 for reg-
ular ones. Nevertheless, the distribution of the DNLD and RNLD
values for the studied set of ICs can be utilized to determine a more
accurate threshold value for distinguishing between chaotic and reg-
ular orbits. In Fig. 2(e), we present the normalized distribution of
the D1

L (blue curve) and the R1
L values (orange curve), which are,

respectively, depicted in Figs. 2(c) and 2(d). We see that both dis-
tributions have a similar shape, exhibiting two well defined peaks.
One peak is localized at high values of the indices and corresponds to
chaotic orbits, while the other is related to regular orbits and appears
at lower D1

L and R1
L values. A good cutoff point separating the two
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FIG. 2. (a) The PSS (defined by x = 0, px > 0) of the Hénon–Heiles system (16) with energy H = 1/8. The IC of the regular and chaotic orbit considered in Fig. 1 is,
respectively, denoted by a blue and a green dot on the py = 0 line (red horizontal line). (b) The forward LDs, at τ = 103, of about 4500 orbits whose ICs are homogeneously

distributed on the py = 0 line of the system’s PSS [red horizontal line in panel (a)] as a function of the IC’s y coordinate. The values of log10 D
1
L (c) and log10 R

1
L (d) of

the orbits considered in (b), with respect to the y coordinate of the orbits’ IC. The values log10 D
1
L = −3.1 and log10 R

1
L = −3.4 are, respectively, denoted by a horizontal

blue line in (c) and a horizontal orange line in (d). (e) Normalized distributions of the log10 D
1
L (blue curve) and log10 R

1
L (orange curve) values of panels (c) and (d). The

values log10 D
1
L = −3.1 and log10 R

1
L = −3.4 are, respectively, denoted by a vertical blue and orange dashed line. (f) The values log10 SALI after τ = 106 (inset: τ = 103)

time units, of the orbits of panel (b), with respect to the y coordinate of their ICs. In both the main and the inset panel of (f), the horizontal green line denotes the value
log10 SALI = −8.

peaks (and, consequently, between chaotic and regular orbits) can
be taken as the index value (D1

L or R1
L) for which the distribution

attains its minimum between the two peaks. These threshold values
approximately correspond to log10 αD = −3.1 and log10 αR = −3.4

for the D1
L and R1

L, respectively, and are denoted by vertical dashed
lines in Fig. 2(e). These two threshold values are also indicated by
horizontal lines in Figs. 2(c) and 2(d), where it can be clearly seen
that they correctly capture the separation between high and low D1

L

Chaos 32, 123122 (2022); doi: 10.1063/5.0120889 32, 123122-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

and R1
L values. It is worth noting that the choice of an appropriate

threshold value αD (αR) through the creation of the DNLD (RNLD)
distribution depends on the particular studied system and the con-
sidered set of orbits, which will determine the exact placement of the
separation between the distribution’s peaks.

Therefore, using the above defined αD (αR) threshold value, we
can characterize orbits as either regular or chaotic depending on
whether their D1

L (R1
L) values are below or above this threshold. In

order to test the accuracy of this classification, we also compute the
SALI (on the same grid of ICs as we did for D1

L and R1
L) in order

to identify orbits as regular or chaotic. In particular, we do this
computation for two final times, τ = 103 [inset of Fig. 2(f)], which
is the same time we used of computing the forward LDs and the
related D1

L and R1
L indices [Figs. 2(b)–2(d)], and τ = 106 [main panel

of Fig. 2(f)] in order to accurately reveal the true nature of stud-
ied orbits. From the results of Fig. 2(f) and its inset, we see that,
in accordance to (3), the log10SALI attains large values for regular
orbits, while for chaotic ones, it goes to zero, reaching values close to
the computer double-precision accuracy (log10 SALI ≈ −16) quite
fast. This clear dichotomy between large (regular orbits) and very
small (chaotic orbits) log10 SALI values is not that clear for τ = 103

as many orbits exhibit in-between values. These are mainly sticky
orbits, located at the borders of stability islands, which need more
time to reveal their chaotic nature.46

Following Ref. 46, we use the value log10 SALI = −8 as a
threshold to discriminate between regular (log10 SALI > −8) and
chaotic orbits (log10 SALI ≤ −8) in our ensemble and compare these
results with the ones obtained using the values of D1

L and R1
L and

the thresholds log10 αD = −3.1 and log10 αR = −3.4. Assuming that
the SALI accurately reveals the nature of the orbits, we find that the
percentage PA of correctly characterized orbits using the D1

L and R1
L

indices are, respectively, PA ≈ 95.1% (PA ≈ 95.4%) and PA ≈ 95.6%
(PA ≈ 95.2%) when the SALI values for τ = 106 (τ = 103) are used.
It is of particular importance to note that these percentages are very
high and do not significantly change when we use the more accu-
rate characterization of orbits obtained from SALI values at τ = 106,
which means that the D1

L and R1
L indices are not only capable of

appropriately capturing the overall behavior of the ensemble, but
can do that on short times.

By carefully analyzing Figs. 2(a)–2(d), we see that D1
L mainly

fails to correctly identify the regular nature of orbits with ICs at
both edges of the permitted range of y axis values (i.e., for y . −0.4
and y & 0.65), where LDs exhibit a smooth but very steep gradient
[Fig. 2(b)]. In these regions, the summation of large absolute differ-
ences between LDs of neighboring orbits in (13) leads to large D1

L

values, something that is naturally expected in chaotic regions due
to the abrupt and erratic variations of LDs’ values. This problem
is expected to be somehow mitigated when the R1

L index is com-
puted, as one of the ratios M(y+

i )/M(x) and M(y−
i )/M(x) appearing

in (15) would be larger than 1 with the other being smaller than 1.
Thus, their sum will not highly deviate from 1, resulting in relatively
small R1

L values, which, in turn, means that the orbit will be (cor-
rectly) characterized as regular. Comparing the points at the extreme
right edges of Figs. 2(c) and 2(d), we see that this expectation is
indeed correct, as many (but not all) points show R1

L values below
the threshold log10 αR = −3.4 [orange horizontal line in Fig. 2(d)],
while the D1

L values of these ICs are above the threshold value

log10 αD = −3.1 [blue horizontal line in Fig. 2(d)]. On the other
hand, the fact that local steep, monotonic gradients in the LD val-
ues of neighboring orbits lead to small R1

L [which was beneficial for
the correct characterization of regular motion at the edges of the y
value range in Fig. 2(b)] could also appear at random places inside
the chaotic region, resulting in relatively small R1

L, which, in turn,
will lead to the wrong characterization of chaotic motion as regu-
lar (recall here the brief dips of the green dashed curve in Fig. 1).
This can be seen, for example, in the case of the chaotic regions
in the range −0.3 . y . 0 for which more data points are below
the threshold line (wrongly denoting the corresponding orbits as
regular) in Fig. 2(d) than in Fig. 2(c).

Furthermore, both the D1
L and R1

L techniques are expected to
face difficulties in correctly revealing the chaotic nature of sticky
orbits. This is because both indices are based on computations of the
forward LDs, whose values are defined by the whole history of the
dynamics, which, in turn, is heavily dominated by the initial, long
regularly behaving phase of the orbit’s evolution. This issue could
be addressed by considering longer integration times for the com-
putation of LDs. Of course, this approach will lead to more accurate
results but will also cause the loss of a basic advantage of the D1

L and
R1

L indices, namely, their ability to reliably capture the basic charac-
teristics of the dynamics (within a remarkably small error of 5% for
the case of Fig. 2) by performing computationally cheap short time,
coarse-grid simulations.

B. Global dynamics of the Hénon–Heiles system

After demonstrating the fundamental characteristics of the
DNLD and RNLD indicators and building our understanding as
to how we can use these indices to distinguish between regular
and chaotic motion for a set of orbits on a line of the PSS of the
Hénon–Heiles system, we perform here an in-depth investigation of
the system’s global dynamics for different energy values.

First, we examine the case with energy H = 1/8, which we
already considered in Figs. 1 and 2. In order to reduce the required
computational cost, we make use of the fact that the PSS defined by
x = 0, px > 0, is symmetric about the py = 0 line [see Fig. 2(a)] and
restrict our investigation in its upper half specified by py ≥ 0. In par-
ticular, we consider a grid of 1600 × 800 equally spaced ICs in the
region defined by −0.5 ≤ y ≤ 0.75 and 0 ≤ py ≤ 0.5, setting in this
way the distance between neighboring ICs to σ = 7.8125 × 10−4

in the y direction and to σ = 6.25 × 10−4 in the py direction. This
arrangement leads to about 865 000 energetically permitted ICs. We
compute the LD of each one of these ICs for τ = 1000 and then eval-
uate their D2

L (13) and R2
L (15) indices. It is worth noting here that

since our ensemble of orbits lie on a 2D subspace of the system’s
phase space, we implement the definitions of the DNLD Dn

L (13) and
RNLD Rn

L (15) indices for n = 2. The outcome of these computa-
tions is presented in Figs. 3(a) and 3(b) where ICs are, respectively,
colored according to their log10 D2

L and log10 R2
L values. By compar-

ing these two color plots with the PSS of Fig. 2(a), we clearly see
that both indices manage to reveal the main features of the dynam-
ics. In both Figs. 3(a) and 3(b), islands of regular motion show up as
regions of small log10 D2

L and log10 R2
L values, while chaotic regions

are represented by larger DNLD and RNLD values.
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FIG. 3. Results obtained for orbits having their ICs on a 1600 × 800 grid (around 865 000 energetically permitted ICs) on the py ≥ 0 part of the x = 0, px > 0, PSS of the

Hénon–Heiles system (16) with energy H = 1/8. The ICs are colored according to the orbits’ (a) log10 D
2
L, (b) log10 R

2
L , and (c) log10 SALI values using the color scales at

the top of each panel. The results in (a) and (b) are based on computations of LDs for τ = 103 time units, while the SALI values in (c) are computed for τ = 104. Initial
conditions of orbits characterized as chaotic by the (d) D2

L (log10 D
2
L ≥ −3), (e) R2

L (log10 R
2
L ≥ −3.4), and (f) SALI (log10 SALI ≤ −8) indices.

In order to further study the ability of the D2
L and R2

L indices
to correctly identify the regular or chaotic nature of orbits, we first
compute the SALI (1) of each individual orbit to create a refer-
ence chart of regular (large log10SALI values) and chaotic (small
log10SALI values) regions on the system’s PSS. The computation of
the SALI is done for τ = 104 time units, as this time is sufficient
to create an accurate portrait of the dynamics at reasonable CPU
times. The outcome of this process is shown in Fig. 3(c). The direct
comparison of this plot with Figs. 3(a) and 3(b) shows the overall
good diagnostic ability of the D2

L and R2
L indices, as their implemen-

tation allows the identification of even small islands of stability in the
chaotic sea and emphasizes the strength of these simple quantities
for describing the phase space structure.

Then, similarly to what was done for the orbits of Fig. 2, we use
the D2

L and R2
L values to characterize the orbit of each IC as regular

or chaotic and check the correctness of this characterization based
on a similar analysis by exploiting the orbits’ SALI values. In order
to identify threshold values for the D2

L and R2
L indices to discriminate

between regular and chaotic orbits, we create in Fig. 4 the normal-
ized distributions of the computed log10 D2

L (blue curve) and log10 R2
L

(orange curve) values. It is worth noting that these distributions have

similar shapes to the ones observed for the D1
L and R1

L indices in
Fig. 2(e). Then, as was done in that figure, we determine threshold
values between the two peaks of each distribution, which will be used
to separate the regular from the chaotic orbits. In this case, we con-
sider the following thresholds, log10 αD = −3 and log10 αR = −3.4,
which are, respectively, denoted by the blue and orange dashed lines
in Fig. 4. Orbits with index values above this threshold are charac-
terized as chaotic, with the remaining orbits identified as regular. In
addition, as was done in Fig. 2(f), orbits with log10 SALI ≤ −8 are
labeled as chaotic, with regular orbits having log10 SALI > −8.

Implementing these thresholds, we show in Figs. 3(d)–3(f) the
ICs that are classified as chaotic by each indicator. The direct com-
parison of these figures shows that both the D2

L [Fig. 3(d)] and the R2
L

[Fig. 3(e)] indices manage to correctly capture the structure of the
chaotic component of the dynamics (and, consequently, the com-
plementary regular part) as the obtained structures agree for the
vast majority of points with the SALI classification [Fig. 3(f)]. Nev-
ertheless, some discrepancies can be identified. For example, we
notice the existence of a few, thin regions inside some large sta-
bility islands, which are incorrectly identified as chaotic by the D2

L

and R2
L indices, in contrast to the classification provided by the SALI
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FIG. 4. Normalized distributions of the log10 D
2
L (blue curve) and log10 R

2
L (orange

curve) values of the orbits considered in Figs. 3(a)–3(c). The values log10
D2
L = −3 and log10 R

1
L = −3.4 are, respectively, denoted by a vertical blue and

orange dashed line.

method. Furthermore, the difficulties faced by the indices (in par-
ticular, the DNLD) when identifying regular behavior at the borders
of the permitted PSS region, which was also present in the analy-
sis of the results of Fig. 2, is also evident here as, for example, the
strip along the top right border of the PSS is incorrectly classified as
chaotic. In addition, the density of points in the extended chaotic
regions in Fig. 3(e) is not very high as white points are present,
wrongly signifying the existence of regular orbits. This drawback of
the RNLD index was also discussed in Sec. III A.

In order to further substantiate and clearly reveal these dis-
crepancies, we identify the ICs that are incorrectly characterized as
chaotic or regular by the D2

L [Fig. 5(a)] and the R2
L [Fig. 5(b)] index,

with respect to the identification obtained by the SALI method.
More specifically, in Fig. 5, we use blue (red) points for the ICs,
which although the SALI identifies them as regular (chaotic), the
D2

L [Fig. 5(a)] or the R2
L [Fig. 5(b)] index falsely characterizes them

as chaotic (regular). From the results of Fig. 5, it is easily seen that
both indices fail to reveal the true nature of sticky, chaotic orbits
at the borders of stability islands, with the D2

L performing slightly
worse than the R2

L as the thickness of the regions of red-colored
points at the borders of stability islands is larger in Fig. 5(a) than
in Fig. 5(b). On the other hand, the R2

L index incorrectly character-
ized more isolated chaotic orbits in the big chaotic sea of the system,
as in Fig. 5(b), we observe more scattered red-colored points in that
region. In addition, both indices have problems in revealing the reg-
ular nature of some orbits and, in particular, the ones located at the
borders of the permitted PSS region, as the presence of the blue-
colored “layer” in that area denotes. It is worth noting that the D2

L

index performs slightly worse than the R2
L method in that region, as

the larger width of the blue-colored “layer” indicates. Nevertheless,
despite the incorrect identification of the nature of the ICs depicted
in Fig. 5, both the D2

L and the R2
L indices manage to capture the

overall behavior of the Hénon–Heiles system (16) for H = 1/8, as
is seen in Figs. 3(d) and 3(e). In particular, for the grid spacings and

FIG. 5. The set of ICs of Fig. 3, which are incorrectly characterized by the (a) D2
L

and (b) R2
L index. In both panels, blue points correspond to regular orbits (accord-

ing to the classification obtained by the SALI method), which are falsely identified
as chaotic, while red points denote chaotic orbits, which are incorrectly identified
as regular.

integration times used in Figs. 3 and 5, we find that the characteri-
zation by the D2

L (R2
L) of PA ≈ 91.8% (PA ≈ 92.3%) of the orbits is in

agreement with the results provided by the SALI method.
Based on the analysis of Figs. 3 and 5, we expect the DNLD

index to perform better for systems with large, extended chaotic
regions, while the RNLD method would perform better in sys-
tems with larger regular regions. In order to investigate the valid-
ity of these predictions, we perform a similar analysis to the
one conducted in Figs. 3–5, but for different energy values of
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FIG. 6. (a) The py ≥ 0 part of the x = 0, px > 0, PSS of the Hénon–Heiles system (16) with energy H = 1/6. The ICs of orbits on the PSS of (a), which are incorrectly

characterized by the D2
L and R

2
L index are, respectively, shown in (b) and (c) where blue points correspond to regular orbits (according to the classification obtained by the

SALI method), which are falsely identified as chaotic, while red points denote chaotic orbits, which are incorrectly identified as regular.

the Hénon–Heiles system, which result in different extents of the
chaotic regions.

In Fig. 6, we present results for the Hénon–Heiles system (16)
with energy H = 1/6. From the system’s PSS in Fig. 6(a), we see
the existence of a more extended chaotic region than was observed
in Fig. 3(a) for H = 1/8. Similarly to that case, we consider a
grid of 1600 × 800 equally spaced ICs in the region −0.5 ≤ y ≤ 1
and 0 ≤ py ≤ 0.6 so that the distance between neighboring ICs is
σ = 9.375 × 10−4 in the y direction and σ = 7.5 × 10−4 in the py

direction. This setup yields about 852 000 energetically permitted
ICs. As before, the evaluation of the D2

L and R2
L indices is based on

computations of LDs for τ = 103, while the SALI values are com-
puted for τ = 104. By performing a similar analysis to that presented
in Fig. 4, we set the threshold values for D2

L and R2
L to, respectively,

log10 αD = −2.9 and log10 αR = −3.4. Then, keeping the thresh-
old value for SALI to log10 SALI = −8, we obtain PA ≈ 99.5% and
PA ≈ 98.0% agreement in the characterization of orbits when,
respectively, the D2

L and R2
L index is used in comparison with the

SALI method. As predicted, the D2
L index performs slightly better

than R2
L due to the fact that the system is mainly chaotic. The small

number of incorrectly characterized ICs are mainly at the borders
of the (few) stability islands for the D2

L index [Fig. 6(b)], while, as
in Fig. 5 for H = 1/8, R2

L incorrectly characterizes isolated chaotic
orbits in the extend chaotic sea.

In Fig. 7, we present results similar to those in Fig. 6 but for
H = 1/9, which results in a PSS [Fig. 7(a)] with less chaos and
correspondingly larger regular regions. Considering almost 760 000
ICs on a 1600 × 800 grid for −0.5 ≤ y ≤ 1 and 0 ≤ py ≤ 0.6 (i.e.
σ = 7.8125 × 10−4 and σ = 6.25 × 10−4 in, respectively, the y and
py direction), we compute, as in the previous cases, the D2

L, R2
L,

and SALI for each IC. Setting the threshold values for discriminat-
ing between regular and chaotic motion to log10 αD = −3.1, log10

αR = −3.3, and log10 SALI = −8, we obtain an agreement of
PA ≈ 85.4% (PA ≈ 88.5%) between the D2

L (R2
L) and the SALI

orbit classification. We show the initial conditions that are incor-
rectly characterized by the D2

L and the R2
L index in, respectively,

FIG. 7. Similar to Fig. 6 but for the Hénon–Heiles system (16) with energy H = 1/9.
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Figs. 7(b) and 7(c). The large number of regular islands surrounded
by sticky orbits at this energy results in the lower accuracy of both
indices, with respect to their previous implementations. As pre-
dicted, the R2

L index performs better than the D2
L due to the increase

of the regular component in the PSS. The borders of the ener-
getically allowed phase space are again (as in the H = 1/8 case)
incorrectly characterized mainly by the D2

L index [see the rather
thick blue-colored region in Fig. 7(b)] resulting in lower accuracy
than exhibited by the R2

L index.

C. Global dynamics of the 2D standard map

To further investigate the ability of the DNLD and the RNLD
indices to reveal the chaotic behavior of discrete time dynamical sys-
tems, we apply them to the case of the well-known 2D standard map,
a symplectic mapping of the form23

x′
1 = x1 + x′

2

x′
2 = x2 +

K

2π
sin (2πx1)

(mod 1), (17)

with K being a real parameter. Both variables are given (mod 1) so
that 0 ≤ xi < 1, i = 1, 2, while the prime ( ′ ) denotes the values of
the coordinates after one iteration of the map.

As a representative example of the system’s dynamics, we con-
sider the case K = 1.5, for which the map has a large number of ICs
displaying regular or chaotic behavior, and follow the same steps of
analysis as for the Hénon–Heiles model. In particular, forward time
LDs are computed on a square grid of 1200 × 1200 ICs for T = 103

iterations, and based on these values, we evaluate the D2
L and R2

L

indices for each IC. In addition, the SALI values are computed on
the same grid for a total number of T = 105 iterations. The output
of this process is seen in Fig. 8. As in the case of the Hénon–Heiles
system [Figs. 3(a)–3(c)], plots of the phase space where ICs are col-
ored according to their log10 D2

L [Fig. 8(a)], log10 R2
L [Fig. 8(b)], and

log10 SALI [Fig. 8(c)] values reveal the same phase space structures.
Similarly to Figs. 5, 6(b) and 6(c), and 7(b) and 7(c), we show

in Figs. 8(d) and 8(e) the ICs that are incorrectly characterized
by the D2

L and R2
L indices, respectively, considering the identifica-

tion obtained through their SALI values as true. The discrimination
between regular and chaotic orbits by these indices is done by setting

FIG. 8. Results obtained for orbits having their ICs on a 1200 × 1200 grid on the phase space of the 2D standard map (17) with K = 1.5. The ICs are colored according to
the orbits’ (a) log10 D

2
L, (b) log10 R

2
L , and (c) log10 SALI values using the color scales at the top of each panel. The results in (a) and (b) are based on computations of LDs at

T = 103 iterations, while the SALI values in (c) are computed for T = 105 iterations. The set of ICs of the map, which are incorrectly characterized by the (d) D2
L and (e) R

2
L

index, with blue points corresponding to regular orbits (according to the classification obtained by the SALI method), which are falsely identified as chaotic, and red points
denoting chaotic orbits, which are incorrectly identified as regular. (f) Normalized distributions of the computed log10 D

2
L (blue curve) and log10 R

2
L (orange curve). The values

log10 D
2
L = −2.3 and log10 R

1
L = −3 are, respectively, denoted by a vertical blue and orange dashed line.
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appropriate threshold values. For the D2
L and R2

L indices, this is
done through the construction of the distributions in Fig. 8(f), from
which we, respectively, define the values log10 αD = −2.3 and log10

αR = −3 as appropriate thresholds separating the two peaks. Since
according to (4), the SALI is decreasing to zero for both regular
(power law decrease) and chaotic (exponential decrease) orbits, an
appropriate threshold value to distinguish between the two cases
depends on the final number of iterations for which the index is
computed. In our case, for which the SALI is evaluated after T = 105

iterations, this threshold value is set to log10 SALI = −12.
From the results of Fig. 8(d), we once more see that the D2

L

index fails to correctly characterize regular regions of large but
smooth LD gradients, such as the ones that are now found in the
center of stability islands [see, for example, the blue-colored area
at the center of Fig. 8(d)]. Furthermore, as we see from Fig. 8(e),
the R2

L index exhibits the same behavior we encountered for the
Hénon–Heiles system and mischaracterizes as regular several ICs
in the large chaotic sea of the 2D map. Nevertheless, despite these
discrepancies, both indices show very good performance as they
manage to correctly characterize PA ≈ 96.8% (D2

L) and PA ≈ 95.4%
(R2

L) ICs. These results clearly demonstrate that we can implement
the DNLD and RNLD methods to reliably distinguish between reg-
ular and chaotic motion in low-dimensional conservative dynam-
ical systems of both continuous autonomous Hamiltonians and
area-preserving discrete time symplectic maps.

D. Effect of grid spacing and final computation time

Let us now discuss in more detail the effect of the final inte-
gration time (τ ) [or the total number of map iterations (T)], and
the grid spacing (σ ) of neighboring ICs, on the performance of the
DNLD and RNLD indices.

It is important to note that the LDs themselves, and, con-
sequently, the DNLD and RNLD indices, implicitly encode the
exponential (polynomial) rate of divergence of nearby chaotic (reg-
ular) orbits. It is also reasonable to expect that very short integration
times will be insufficient for a clear classification of chaotic and
regular orbits, as, in general, any numerical method requires a suffi-
cient number of data to perform properly. More specifically, in our
case, we need long enough computations of LDs to clearly differen-
tiate between exponential and polynomial growths, and therefore,
very short numerical integrations are not expected to produce good
results. Furthermore, as we discussed in Sec. III A, since the evalu-
ation of both the DNLD and RNLD indices is based on the whole
evolution of orbits, very short time computations have difficulties
in revealing the true nature of the dynamics, as, for example, we
have repeatedly seen in cases of sticky orbits at the borders of sta-
bility islands. On the other hand, trying to create reliable short
time diagnostics based on LDs is desirable to avoid unnecessar-
ily long and CPU time consuming computations, especially since
excessively long integration times can lead to an unclear pattern of
behaviors. In order to understand the source of this drawback, we
underline that the diagnostic power of the DNLD and RNLD meth-
ods resides in their ability to discriminate between the smooth and
erratic variations of LD values of neighboring ICs [seen, for exam-
ple, in Fig. 2(b)], which are, respectively, encountered in regular
and chaotic regions of the phase space. Thus, for very long times,

even the polynomial growth rates exhibited by regular orbits may be
fast enough to create an apparently non-smooth behavior of LDs
variations, which, in turn, will affect the diagnostic ability of the
indices.

With respect to the effect of the σ on the performance of the
DNLD and RNLD indices, we note that a very fine grid (i.e., small
distances between neighboring ICs) will require longer CPU times,
as more orbits have to be integrated but, in principle, should produce
more accurate results. On the other hand, using a larger grid spacing
will decrease the required computational cost but, at the same time,
will inevitably lead to a less accurate description of the dynamics.
Thus, a balance between these two aspects should be sought in every
practical application of the indices.

It is worth noting that although in all considered cases in this
study, the DNLD and RNLD distributions retain their shape exhibit-
ing two well defined peaks, similar to what is seen in Figs. 2(e), 4,
and 8(f), the exact value of the threshold used to distinguish between
regular and chaotic orbits (defined to be the minimum between
the two peaks) varies for each σ value and total number of itera-
tions T. This behavior is, for example, demonstrated in Fig. 9, where
we show the distributions of the log10 D2

L [Figs. 9(a) and 9(c)] and
the log10 R2

L [Figs. 9(b) and 9(d)] values for the 2D standard map
(17) with K = 1.5 for various σ and T values. The distributions in
Figs. 9(a) and 9(b) are obtained for σ = 10−3 and for three dif-
ferent T values, namely, T = 100 (blue curves), T = 500 (orange
curves), and T = 1000 (green curves). The vertical dashed lines indi-
cate the threshold values near the minimum of these distributions,

FIG. 9. Normalized distributions of the [(a) and (c)] log10 D
2
L and [(b) and (d)]

log10 R
2
L values for the 2D standard map (17) with K = 1.5. The results in (a) and

(b) are obtained for fixed spacing σ = 10−3 and for three different numbers of
iterations T of the map, whose explicit values are give in the legend. In (c) and (d),
T is fixed to T = 1000, while σ varies. For each distribution, the threshold value
chosen to separate the two peaks is shown by the respective dashed vertical line.

Chaos 32, 123122 (2022); doi: 10.1063/5.0120889 32, 123122-12

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 10. The percentage PA of orbits, which are correctly characterized by the (a) D
2
L and (b) R

2
L indices for the 2D map (17) with K = 1.5 [insets: the Hénon–Heiles system

(16) for H = 1/8], with respect to the identification obtained by the SALI method for T = 105 iterations [insets: τ = 104 time units], as a function of the number of iterations
T [insets: integration time τ ] used to compute the related LDs. Results are given for four different grid spacings σ , whose explicit values are reported in the legends and are
the same for both systems. In the case of the 2D map (main panels), ICs were taken in the system’s entire phase space with equal spacing σ in both the x1 and x2 axes,
while for the Hénon–Heiles system (insets), the considered ICs were located in the py ≥ 0 part of the system’s PSS defined by x = 0, px > 0, with the same spacing σ

used for both the y and py coordinates.

which are used to discriminate between chaotic and regular orbits.
Here, we see a slight decrease in the threshold value with increasing
T, which is more evident for the R2

L index [Fig. 9(b)]. Similarly, in
Figs. 9(c) and 9(d), we, respectively, present the distributions of the
log10 D2

L and the log10 R2
L values obtained for T = 1000 and σ = 10−3

(blue curves), σ = 5 · 10−4 (orange curves), and σ = 2 · 10−4 (green
curves). From the results of these figures, it is seen that a varying
grid size does not significantly change the position of the threshold
for both indices, although a slight decrease of the threshold value
with decreasing σ is observed.

In the main panels of Fig. 10, we show, for the 2D standard
map (17) with K = 1.5, how the percentage PA of ICs correctly char-
acterized by the D2

L [Fig. 10(a)] and R2
L [Fig. 10(b)] methods (when

compared with SALI computations for T = 105 iterations) changes
with the number of iterations T used to compute the related LDs
for several σ values defining a symmetric grid in the phase space
of the system. For both indices, the PA values initially increase as T
grows for all σ values, showing a rise of at least 5% when T changes
from T = 102 to T = 103. After that point, for the coarser grids with
σ = 10−3 (blue circles in Fig. 10) and σ = 5 · 10−4 (orange trian-
gles in Fig. 10), we see a decrease in performance, which is likely
related to the predicted introduction of confusion in regular regions
where the polynomial divergence of nearby orbits could lead to non-
smooth LD variations. It is also evident that, after some σ value, the
further decrease of σ does not significantly change the behavior of
PA for increasing T values, as the results for σ = 2 × 10−4 (green
squares in Fig. 10) and σ = 1 × 10−4 (red stars in Fig. 10) are rather
similar. The insets in each panel of Fig. 10 show analogous results

to the main panels, but for the PSS (defined by x = 0, px > 0) of
the Hénon–Heiles Hamiltonian (3) with H = 1/8, when the SALI is
computed at τ = 105 time units. Also, here, we see a drastic initial
improvement with increasing τ values, followed by a more moder-
ated one, but the turning point to lower PA values does not appear at
the timescales studied.

The main message of this analysis is that we have to balance the
desired accuracy against the required computational time in numer-
ical applications of the DNLD and RNLD indices. It is also very
clear from the results of Fig. 10 that simply increasing the LD com-
putation time very quickly loses value as an approach to improve
accuracy. A sufficiently high T (or τ ) value is needed for adequately
capturing the basic features of the dynamics, but the further increase
of the final integration time requires a fairly fine grid to be useful
and only provides marginal gains as the associated computational
cost increases significantly. From Fig. 10, we see that for a mixed
phase space, with relatively large chaotic and regular regions, it is
eminently possible to obtain an accuracy of up to PA ≈ 95% with
the DNLD and RNLD methods using feasible grid sizes and relative
short final integration times.

Finally, we note that the CPU time required for identifying the
ensembles of orbits considered in our study as regular or chaotic
by the DNLD and RNLD indices based on short time LD com-
putations is typically three times smaller than the performed SALI
computations for the same values of τ (or T). The reason for this
difference is the fact that the SALI computation for each IC requires
the simultaneous integration of two deviation vectors, apart from
the orbit itself, while the DNLD and RNLD indices circumvent this
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requirement using the computed LD values on the grid points. Of
course, the SALI provides more accurate results, but reaching accu-
racy levels of PA & 90% with the DNLD and RNLD indices is a very
useful alternative, which allows us to have a reliable overall under-
standing of the system’s global behavior at a lower computational
cost. This alternative will be especially usefully in cases where the
variational equations are inaccessible, or very difficult to obtain, or
sufficiently complicated that their numerical integration will require
large CPU times.

IV. SUMMARY AND DISCUSSION

We have introduced and successfully implemented com-
putationally efficient ways to effectively identify chaos in low-
dimensional conservative dynamical systems from the values of LDs
at neighboring ICs. The conceptualization of these methods is based
on the observation that LDs show a smooth variation with regard
to ICs in phase space regions where regular motion occurs, in con-
trast to an erratic behavior seen in chaotic regions. More specifically,
we introduced two indices, which manage to quantify these changes
in the behavior of LDs of nearby ICs: The difference of neighbor-
ing orbits’ Lagrangian descriptors (DNLD), Dn

L (13), and the ratio of
neighboring orbits’ Lagrangian descriptors (RNLD), Rn

L (15). These
indicators use the information about the rate of divergence of nearby
ICs encoded into a precomputed grid of LD values to accurately
estimate the chaoticity of orbits.

By performing several numerical simulations, we confirmed
that both quantities are eminently practical for detecting regions
of chaotic and regular motion in both the 2dof autonomous
Hénon–Heiles Hamiltonian system (16) and the area-preserving 2D
standard map (17), which are widely used prototypical models of
low-dimensional conservative systems, as they exhibit all the basic
dynamical features appearing in such systems. In particular, the cre-
ation of color plots of the systems’ PSS [Figs. 3(a) and 3(b)] or phase
space [Figs. 8(a) and 8(b)], where ICs are colored according to the
corresponding DNLD or RNLD value, clearly show that both indices
manage to reveal the main characteristics of the dynamics.

Apart from this qualitative feature, we investigated in detail
the ability of the indices to provide reliable, quantitative results
about the chaoticity of the studied systems. More specifically, we
used the distributions of the indices’ values to determine appro-
priate threshold values, which allow the characterization of orbits
as regular or chaotic. For all studied cases, for which regular and
chaotic orbits coexist, the DNLD and RNLD distributions have sim-
ilar shapes exhibiting two well defined peaks [Figs. 2(e), 4, 8(f),
and 9]. Then, the value of the index for which the distribution shows
its minimum between the two peaks is used as the threshold value
discriminating between chaotic and regular orbits. This process does
not lead to a universal outcome, as the obtained threshold values
vary for different final integration times τ (number of iterations T)
and distances σ between neighboring orbits. We implemented this
approach and compared our classification with that obtained using
a well-established chaos detection technique, the SALI method. Our
analysis shows that both the Dn

L and Rn
L indices faced problems in

correctly revealing the nature of some orbits, such as sticky chaotic
orbits at the borders of stability islands. The identification of sticky
orbits is of significance in diverse models, such as systems describing

chemical reactions49 or the motion of stars in galactic potentials.50,51

Consequently, the use of the DNLD and RNLD indices to detect
such orbits, possibly in concert with focused SALI computations, is a
topic deserving further investigation. In addition, we predicted and
numerically verified that the DNLD index performs better for sys-
tems with large, extended chaotic regions, while the RNLD method
exhibits better behavior for systems with larger regular regions. Nev-
ertheless, despite these shortcomings, we found that both indices
show overall very good performance, as their classifications are in
accordance with the ones obtained by the SALI at a level of at least
90% agreement.

Studying the effect of the final integration time (or the total
number of map iterations) and the grid spacing of neighboring ICs
on the performance of the DNLD and RNLD indices in Sec. III D,
we found that even relatively short (but not too short) integration
times of coarse-grid LD computations are sufficient to provide a reli-
able description of the dynamics. Furthermore, taking into account
that the evaluation of the DNLD and RNLD indices (which was
based only on the forward in time computation of LDs) typically
required one third of the CPU time needed for implementing the
SALI method, we realize that the proposed techniques not only pro-
vide a clear visualization of phase space structures, but, in fact, can
be used to quantify chaos in a very accurate and efficient manner in
continuous and discrete systems.

Our work constitutes a first step in investigating approaches
of using information gained by LD computations for identifying
chaotic behavior in dynamical systems, without focusing on the
visualization of phase space structures. The development and refine-
ment of methods of this kind is expected to be useful also for high
dimensional systems, where the global visualization of their phase
space is not possible, due to the space’s high dimensionality. The
application of the DNLD and RNLD indices to dynamical systems
of higher dimensionality is a natural extension of the current work
and will form part of the future steps of our investigations.

Following the directions we set up in this work, we can also
implement other quantities to discriminate between chaotic and reg-
ular motion, such as the recently presented ||1LD|| method,52 in the
same way as we used the DNLD and RNLD indices. The ||1LD||

index relies on numerical evaluations of the second spatial deriva-
tive of the LDs to visualize the phase space structure. Assuming a
similar setup to that used for the definitions of the Dn

L (13) and Rn
L

(15) indicators, the ||1LD|| index on a one-dimensional grid of ICs
can be estimated using the second symmetric derivative formula as

||1LD||(x) =

∣

∣M(y+
i ) − 2M(x) + M(y−

i )
∣

∣

σ 2
, (18)

while an analogous approach can be used for higher dimensional
subspaces of the system’s phase space. The results of Fig. 11 demon-
strate that this quantity can be used in the same manner we imple-
mented the DNLD and RNLD methods, as color maps of its val-
ues show the phase space structure of the Hénon–Heiles system
[Fig. 11(a)]. Furthermore, using the distribution of the index val-
ues [Fig. 11(b)] to determine a threshold value (log10 α1 = 6.7) for
discriminating between regular and chaotic motion, we obtain an
accuracy of PA ≈ 94.2% with respect to the SALI classification [the
ICs of the incorrectly classified orbits are seen in Fig. 11(c)].
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FIG. 11. Results obtained for the case of Fig. 3 using the ||1LD|| index. (a) Orbits’ ICs colored according log10 ||1LD|| using the color scales at the top of the panel.
(b) Normalized distributions of the log10 ||1LD|| values of the orbits in (a), with log10 α1 = 6.7 denoted by a vertical blue dashed line. (c) The set of regular (blue points)
and chaotic (red points) ICs, which are incorrectly characterized by the ||1LD|| index.

As a final comment, let us note that the DNLD and RNLD
methods are not intended to be very precise in estimating the
chaotic part of a dynamical system. This task can be performed by
well-established and efficient methods, which have been designed
exactly for that purpose, such as the SALI we used in our study.
The main advantage of the approaches presented here resides in
their ability to provide a reliable estimation of the overall chaotic-
ity of regions in the phase space from computationally relatively
cheap and simple short time calculations. With large grid spacings
and short integration times typically used for LD computations, by
applying the DNLD and RNLD indicators to a preexisting set of LD
values, which could have been computed independently for visualiz-
ing phase space structures, we can obtain a very useful quantitative
by-product, a trustworthy estimation of the extent of chaos in an
ensemble of orbits.
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